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We study a variant of Davies' model of heat conduction, consisting of a chain of 
(classical or quantum) harmonic oscillators, whose ends are coupled to thermal 
reservoirs at different temperatures, and where neighboring oscillators interact 
via intermediate reservoirs. In the weak coupling limit, we show that a unique 
stationary state exists, and that a discretized heat equation holds. We give an 
explicit expression of the stationary state in the case of two classical oscillators. 
The heat equation is obtained in the hydrodynamic limit, and it is proved that it 
completely describes the macroscopic behavior of the model. 

KEY WORDS: Weak coupling limit; stationary state supporting a tem- 
perature gradient; local equilibrium; heat equation. 

1. I N T R O D U C T I O N  

In this paper  we study the s ta t ionary state and the t ranspor t  properties of  a 
variant  of Davies '  model  of heat conduct ion,  (1) consisting of  a chain S of  N 
harmonic  oscillators, where the ends are coupled to thermal reservoirs R 
and R+  at inverse temperatures 3 -  and /~+, and where neighboring 
oscillators exchange energy via intermediate reservoirs Rj j+1,  which, at 
least up to second order  in their coupling constants  with S, do neither 
absorb  nor  give energy to the system S. The reduced dynamics  is studied in 
the weak coupling (van Hove)  limit, (2,3) which consists in considering only 
the lowest-order nonvanishing effects in the coupling constant  2 of S to 
R =  ( R ,  {Rj,s+I}, R+) ,  for times of  the order  of 2 -2. The model  can be 
studied both  classically and qua n t um  mechanically, without  great 
modifications. 
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It is not too hard to prove that the expectation values of the local 
Hamiltonians Hi: j--1,..., N satisfy a discretized heat equation, whose 
stationary solution exhibits a linear profile (in the case of a homogeneous 
chain), as in Ref. 1; and that a stationary state exists (cf. Ref. 4). On the 
other hand, an explicit determination of the stationary state is exceedingly 
difficult. There are general methods of solution, which are based on an 
assumption of detailed balance; see Ref. 5 for Fokker-Planck equations, 
and Ref. 6 for Markov population processes. However, these methods are 
not applicable in the present case, since the detailed balance condition does 
not hold. As a matter of fact, the validity of this condition is the exception 
rather than the rule in nonequilibrium situations. Nevertheless, for the 
classical version of the model and in the simplest case N = 2, we have been 
able to construct the stationary state p~ explicitly, as a uniformly con- 
vergent power series expansion in the difference of the inverse temperatures 
/3_ and/~+ of the end resevoirs. As should be expected, p~ is not a local 
equilbrium state; deviations from local equilibrium manifest themselves 
starting from second order in / ~  - / 3 + .  For general N, we can only say 
that the stationary state differs from the local equilibrium state 
corresponding to the stationary temperature distribution by terms of the 
order of (/~ _ / ?  +)2; however, those terms become negligibly small on the 
macroscopic scale in the hydrodynamic limit (N ~ o% keeping the length L 
of the chain fixed). There are hopes that the results of Refs. 4 and 7 concer- 
ning the hydrodynamic behavior of stochastic lattice systems can be 
somehow extended to the present model. 

We spend a few words on the motivations for studying models involv- 
ing intermediate reservoirs. In all attempts to understand heat conduction 
from an underlying Hamiltonian dynamics, the main difficulty has been to 
construct tractable microscopic models exhibiting some local dissipation 
properties, leading to a stationary state supporting a temperature gradient. 
The harmonic approximation for a crystal leads to an infinite heat conduc- 
tivity, and anharmonic systems are, with a few exception, not exactly 
solvable. Also numerical investigations (see Ref. 8 for a review) have not 
given very encouraging results, with few exceptions (see, e.g., Ref. 9). 
Models based on the replacement of the Hamiltonian description by a 
kinetic equation such as the Boltzmann equation have been studied since 
1929 in a nonrigorous way(~~ in recent times, Fourier's law of heat con- 
duction has been rigorously derived, via Grad limit and Boltzmann 
equation, for the Lorentz gas (Lebowitz and Spohn<~l)). 

For models of solids, an appropriate idealization, following an idea of 
van Hove, (2) could be that of dividing the conducting bar into 
macroscopically small cells and splitting the Hamiltonian as the sum of 
single-cell terms plus a cell-cell interaction: the latter term should be small 
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compared to the former, thus justifying a weak coupling limit with rescaled 
time, which leads to a Pauli-type master equation for the occupation 
probabilities of the various levels of the unperturbed energy. However, it 
seems hardly possible to perform such a program with full mathematical 
rigor, since it involves a limit of weak cell-cell coupling and a ther- 
modynamic limit for each cell simultaneously. 

A simplified version of this idea is that of describing the heat con- 
ducting bar as consisting of simple systems and reservoirs, corresponding 
roughly to the observed and to the unobserved degrees of freedom of the 
macroscopic system, respectively. The thermodynamic limit for the reser- 
voirs can be taken first, and then the limit of weak coupling between 
systems and reservoirs can be taken more easily. Since the weak coupling 
limit d la van Hove leads to an energy conserving evolution, the reservoirs 
which are responsible for local dissipation must not exchange energy with 
the observed systems. A model constructed by Bolsterli, Rich, and 
Visscher (12) satisfies this condition if the temperatures of the intermediate 
reservoirs are adjusted self-consistently, given the temperatures of the end 
reservoirs. The substantial advantage of the model of Davies, (1~ studied 
also by Alicki, (13) is that the absence of energy transfer between the system 
and the intermediate reservoirs holds irrespective of their states, which need 
not be specified. In the variant we study here, the energy spectrum of each 
system Sj representing a macroscopic cell is unbounded from above, which 
seems to be a better simulation of van Hove's scheme. 

The final step toward a derivation of the heat equation from lattice 
models should be the hydrodynamic limit (lattice spacing e--+0, 
macroscopic length fixed and macroscopic time of the order of e 2). This 
has formed the object of several investigations (4,7) of various authors (De 
Masi, Ferrari, Ianiro, Galves, Kipnis, Marchioro, Pellegrinotti, Presutti, 
Rost, Spohn,...) for classical lattice models with stochastic interactions. 
Davies' model is covered by the results of Refs. 4 and 7; the present variant 
is not, but it should be possible to adapt those methods to this situation. In 
the present paper we only study the macroscopic behavior of the model in 
the hydrodynamic limit, leaving aside the problem of fluctuations. 

The paper is organized as follows. In Section 2, we discuss the general 
features of the model for arbitrary N. In Section 3, we construct the 
stationary states for the classical version with N = 2. Section 4 contains our 
results on the hydrodynamic limit. 

2. T H E  M O D E L :  E Q U A T I O N S  OF  M O T I O N  

Our variant of the model of Davies [see Remark (v) of Section 2 in 
Ref. 1 ] is as follows. We have a chain S of N quantum mechanical har- 
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monic oscillators (with unit mass) Sj: j =  1,..., N, where S, and S N a r e  

weakly coupled to thermal reservoirs R_ and R+ respectively, and where 
neighboring oscillators exchange energy via weak coupling to intermediate 
reservoirs R j j+ , :  j =  1,..., N - 1 .  All the reservoirs may be assumed to be 
infinitely extended quasifree boson systems. There is a corresponding 
classical version of the model, which can be obtained from the quantum 
one by taking the formal classical limit (h ~ O, ( ih ) - l [A ,  B] ~ {A, B}), or 
also studied directly, on the same lines as for the quantum model. ('4) 

The initial state of the system plus reservoirs is assumed to be of the 
form 

W = p | 1 7 4  coj.j+ 1 | (2.1) 

where p is an arbitrary density operator for S, and where co , ogj,j+~, c~+ 
are fixed reference states for R_,  RH+ ~, R +, respectively. 

The Hamiltonian is chosen as 

where 

Here 

H~ = H s + HR + 2HsR (2.2) 

N N 

H s = h ~  Z a ' a s =  Z Hs (2.3) 
j = l  j = l  

N 1 

Hs~=h~/2a~| ~ a ja*~ |  +h~/2aN| +conj (2.4) 
j = l  

aj = (2h)-l/z(ool/eqj + io9 1/2pj) (2.5) 

and b*, b* s +1, b* are suitable linear combinations of creation operators for 
the reservoirs R _ ,  Rj,j+,, R+,  respectively. HR is the sum of the 
Hamiltonians implementing the quasifree evolutions of the reservoirs in the 
GNS representations determined by their reference states, which we assume 
to be stationary for the quasifree evolution and invariant under the gauge 
transformation b ~ e -  i~ 

In the weak coupling limit 2 ~ O, z = 2 2 t  const, the effect of the reser- 
voirs on the reduced evolution of the density operator of S is determined 
by the two-point correlation functions 

f +oo o- - i~ tr ,  a [1. ~ iHRt /h l~ ,  ~ - - iHRt /h ' l  h~...)(~) -- ~ ~'e..)w(...~ ~'(...~ ~ dt (2.6a) 

f+ oO o--icttr [ h *  . i H g t / h I ~  . - - i H R t / h h  .4,  ~(.. .~(~) = ~ ~ ( . . . ~ ( . . . ~  ~ . . .~o  ~ - ,  (2.6b) 
--o(3 
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where ('-') stands for any reservoir index: - ,  j, j +  1, +.  We assume that 
the integrals (2.6) are convergent, and tend to finite limits in the classical 
limit h--+0, whereas the difference h(...)(e)-h'(...)(-~) is of the order of h. 
The assumption that R and R+ are thermal reservoirs, at inverse tem- 
peratures fl_ and fl+, respectively, is expressed by 

~'_ ( -  e) = e-e-h~'h_ (~), h'+ ( -  ~) = e-/~+h~'h + (~) (2.7) 

Concerning the intermediate reservoirs, we only assume that 

/Tjd+ 1(0) = hid+ 1(0), j = 1,..., N -  1 (2.8) 

If we ignore the technical difficulties stemming from the fact that HsR 
is unbounded, and perform the weak coupling limit as in Ref. 3, we find 
that the time evolution of the density matrix p of S, in the interaction pic- 
ture, is asymptotically given by a dynamical semigroup 

exp[Kz](p) = l i m e  iHs'/h TrR[e *H~,/h Wein~,/h] e-,Ust/h 
2+0 

) ~ 2 t  = "c 

The explicit form of K (cf. Refs. 1 and 3) is the following: 

(2.9) 

where 

N 1 
K = K  -~ 2 &,J+ 1-}-K+ (2.10) 

j=l 

1 x_(p) = - if x , p] +-~  h_(o){ ([alp, a? ] + [al, pa~]) 

+ e-~-h~ all + [a~, pal l )}  (2.11a) 

1 
K:d+ I(P) = -- i[Xzi+ 1, P] -- ~ hi,:+ 1(0){ [aja*+l, [a*aj+~, p] ] 

+ [a*aj+l, [aja*+l, p ] ] }  (2.11b) 

1 
K+(p) = - i [X+,  p] + ~-~ h +(ro){ ([aNp, a*] + [aN, pa*]) 

+ e-~+h~([a*p, aN] + [a•, paN])} (2.llc) 

with 

1 ~.~ +~o  

x = 2 - ~  ;~oo {(e-(o)-lh_(o~)a~a~ + (e+co)  lt~ (e )a la*}  d~ 

(2.12a) 
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, = - ~  j,j+1(e)a*ajaj+,a*+l 

+ c~-~'hjo+,(e)aja*a*+laj+l} de (2.12b) 

1 f+03 X+ = - ~  ~ a {(ot--(9)-lh+(cQa*.aN+(e+(9)-lh+(ot)a*aN}dCt 
--03 

(2.12c) 

We shall assume without further mention that the nonnegative constants 
h_(o~), hid+l(0), j =  1,..., N - 1 ,  h+(~)  are strictly positive. 

In spite of the formal nature of the above derivation, we have the 
following: 

Proposition 2.1. The unbounded operator K, defined by Eqs. 
(2.10), (2.11), (2.12) on a suitable domain, determines a dynamical 
semigroup via the method of the minimal solution. ~ 

The proof is an application of Theorem 4.1 of Ref. 15. 

We now turn to the investigation of the existence of a~ stationary state 
and of the transport properties of the model. If a normal stationary states 
exists, it should be expected that it is unique and that all normal states 
approach it in the limit as t ~  Go under the action of exp[Kt]  (this 
"follows," up to technicalities, from Ref. 16; see also Ref. 14 for the classical 
case). By the invariance of K under the gauge transformations aj ~ e -  i~ 
the set d ~ of states which are functions of the local Hamiltonians Hi: 
j =  1,..., N is globally invariant under exp[Kt] :  t~>0, and the stationary 
state, if it exists (and if it is indeed unique, as expected) belongs to g. From 
now on, we restrict our consideration to states p in g; for them we shall be 
able to prove rigorous results. 

In the classical case, the natural method for finding the stationary 
state is to try to solve the stationary Fokker--Planck equation. A state 
exp[Kt](p) in g can be expressed by a function P(B; t), I t= (#,,..., JAN), 

l~j=~o-lHj=lo~l/2"• ~ T  j=I , . . . ,N .  Upon replacing aj by 
(2h)-  ~/2(~ol/2qj + io~ - 1/2pj) in (2.11 ), (2.12) and taking the classical limit 

h ~ O ,  ( i h ) - ' [ A , B ] ~ { A , B } ,  ~[' A , B ] + ~ A B = B A  (2.13) 

(cf. Ref. 14), we can obtain the Fokker-Planck equation for p(It; t). After a 
lengthy but straightforward calculation, we find 

( ) ~ p( i t ; t )=  L _ +  Z LJO+I+L+ p(it; t)  (2.14) 
j = l  
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where 

I 8 2 8 ] 
L = h  ((J)) ~/i ~,2 -~ (fl o9,1 --~ l ) ~]./~ -~ fl_ (.o (2.15a) 

= h.+ 1(0) .j ,j+l  +  g+l % %+ d 

( ~ ?  ~ : ) ]  (2.15b) + (~/j -- ~/j+ 1) a/~j+ i 

L+ =h+(~o) ]~N~2N+(fl+(O#N+I ) + f l+O)  (2.15C) 

The stationary solution of (2.14), (2.15) is constructed in Section 3, for the 
simplest case N =  2, as a uniformly convergent power series expansion in 
6 _ 1 ( f l _  _ + ). 

For the quantum version of the model, one could try to solve the 
corresponding Fokker-Planck equation for the Glauber-Sudarshan 
quasiprobability function P, which is of the same form as (2.14), but with 
different expressions for L and L+. However, we have not been able to 
go very far along this approach. 

There is an alternative way of studying the time evolution of a state p 
in g, which is applicable both in the classical and in the quantum version 
of the model, and which allows to prove that there exists a unique state p~ 
such that 

lim exp[Kt](p)=po~ for allp in do (2.16) 

The expression of p~ is given in a rather implicit fashion, but more con- 
crete results can be obtained in the limit as N---, oe (see Section 4 below). 
We dedicate the remaining of the Section to this approach to the problem. 

We introduce the notation (p; A)  for the expectation value of an 
observable A in a state p, both classically and quantum mechanically. 
Explicitly, we have 

(p;A)= 
I Tr[pA] (quantum) (2.17a) 

f ''' fR2N pA dql dpl""dqu dpu (classical) (2.17b) 

A state exp[Kt](p) in d ~ is completely determined by the correlation 
function G(k; t): k = (k , kl,..., kN, k+); kr = 0, 1, 2,...; r = - ,  1,..., N, + ; 
t e N +, defined by 

822/38/5-6-17 
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G(k; t )=  T k- Tk+ + lexp[Kt](p);  f i  (ki!) -1" H~J:) (2.18) 
j = l  

T+ = hco(e ~+-h~ 1) -1 (quantum) (2.19a) 

T+ = fi~l (classical) (2.19b) 

As we shall see presently, the time evolution of the G(k; t) admits of an 
alternative interpretation in terms of a Markov jump process describing fic- 
titious "particles" on the sites ( - ,  1,..., N, + ), jumping to neighboring sites 
and being eventually absorbed by the boundaries { - ,  + }. As in Ref. 4, 
this Markov jump process can be used to show that (2.16) holds. We are 
indebted to C. Kipnis for this observation, 

Proposition 2.2. The correlation functions G(k; t) satisfy 

d 
7 6(k; t) = ~_ k , [ a ( k _  + 1, k ,  - 1,...; t )  - 6(k; t)] 

N - - 1  

+ ~ 7jj+l{kj(kj+~ + 1)[6(  .... k j -  1, kj+~ + 1,...; t ) - G ( k ;  t)] 
j = l  

+kj+~(k/+ 1)[G( .... k j+  1, kj+ 1 - 1,...; t ) - G ( k ;  t)]} 

- ' } - ~ ) + k N [ G ( , . .  , k N - 1, k+ + 1; t ) -  G(k; t)] (2.20) 

where 

7_+ = h - l (  1 - e-~-'e~ hi(co) 

7+ =/~+ coh_+(co) 

Yj,j+ 1 = hj,/+ ~(0), j = 1,..., N -  1 

(quantum) (2.21a) 

(classical) (2.2 lb) 

(quantum and classical) (2.21c) 

P r o o f .  We consider the quantum case; the classical case may be 
studied along the same lines, or also by taking the classical limit on the 
final result of the calculations. The G(k; t) can be obtained as derivatives of 
a generating functionalf(u; t), u = (ul ..... UN), Uje R +, j =  1,..., N; t~ R +, as 

+__[-[ t) - + OufJ//("; .=o (2.22) 

where 

f (u;  t )=  exp[Ktq(p); exp i(hco) U2 • zja* exp i(hco) 1/2 ~, gaj  
L j = = l  t.. j = l  

(2.23) 
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with uj 
straightforward computation, starting from (2.1 l), leads to 

=]zj] 2, zy~C, j=I, . . . ,N, and where p is in g. A lengthy but 

where 

0 u [ N-, ] 
N f  ( ; t ) =  D_+ ~ Djd+I+D + f (u ; t )  (2.24) 

j = l  

Dj, j+,=Tj,j+, + uj . j§  
6uj+ l /  Ouj+ l 

j =  1,..., N -  1 

(2.25a) 

(2.25b) 

and where T_+ and the ys are defined by (2.19) and (2.21), respectively. Dif- 
ferentiating (2.24) as in (2.22) yields (2.20). | 

Remark 2.3. Equation (2.20) defines the generator of the Markov 
semigroup associated with the Markov jump process mentioned above. It 
should be compared with the similar equations of Refs. 4 and 7a. 

It is clear that each "particle" will be absorbed, in the limit as t ~ oo, 
by one of the boundaries. We denote by Po~(k ,k+lkl,...,kN) the 
probability that, starting at t = 0 with kj "particles" at site j, j = 1,..., N, k_ 
(resp. k+) of them will be eventually absorbed by the left (resp. right) 
boundary. The problem of determining ~ ( k _ ,  k+ Ik~,..., kN) explicitly 
appears to be a hard one, and we have no answers so far; nevertheless, the 
fact that the P~s exist is sufficient to conclude that (2.16) holds. Indeed, we 
have the following: 

Proposition 2.4. For all p in g, we have 

l irn (exp[Kt](p);j~__ 1 (kj ,)- l :  H~J:) 

= ~ Tk_-Tk++P~o(k ,k+fk~ ..... ku) 
k_,k+:k_ +k+ =ZN=Ikj 

j = l  
(2.26) 
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Proof (cf. Ref. 4). Just follow the time evolution of G(k; t) for 
large t. | 

The transport properties of the model are described in the following 
proposition, which is the special case of Proposition 2.2 corresponding to 
Y~kj= 1. 

P r o p o s i t i o n  2.5. The internal energy density 

rs(t)-- <exp[Kt](p); Hs), j=  1,..., N, te~+ (2.27) 

satisfies the discretized heat equation 

d 
d5 Tj(I) ~- ~j_ 1,j[Tj_ l ( t )  - T j . ( t ) ]  -~ ~j,j+l [ L+ 1 ( 1 ) -  Tj(t)], j = l  ..... N 

(2.28) 

where 

kj(r,s)=bj, r+c~j,s: j=  - ,  1 ..... N, + (2.33) 

Then we have the following: 

P r o p o s i t i o n  2.6. The truncated energy-energy correlations Vr,,(t) 
are given by 

Vr,,(t)=(exp[SPt] V(O)+ f ]exp[• ( t - t ' l ]  C(t')dt')r,, (2.34) 

where 7o,1 = ~ - ,  ~N,N+ 1 : ])+, and where 

To(t) - T_, TN+ t(t) =-- r+, for all t (2.29) 

In particular, the stationary energy distribution Tit: j=- ' l  ..... N, in the 
special case of a homogeneous chain, 7j,j+ 1 = Y for all j, is given by 

T~t= T_ +j(N+ 1) I(T+ - T ) (2.30) 

and the heat flux in the stationary state (13'17~ is given by 

Jst = 7 ( N +  1)-~(T+ - T _ )  (2.31) 

We can also consider the special case of Proposition 2.2 corresponding 
to ~k j=2 .  Define the truncated energy-energy correlations Vr,s(t): r, 
s =  1,..., N by 

Vr,s(t) = G(k(r, s); t ) -  Tr(t ) Ts(t ) (2.32) 
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where the linear operator 5r on NN~ is defined by 

(~V) r ,s~- (1D i -~ ) r4 -1 ,s )E~) r , r+ l (Vr+ l , s  - Vr, s)-}-~)s--l,3"(Vr,s l - -  Vr,s)]  

4- (14-~. 1,s)ETr_~,r(Vr_l,s--Vr,s)4-Ts,s+,(Vr,s+l--Vr, s)] 
(2.35) 

with the boundary conditions 

Vr,o = No,s= Vr,N+I = gN+l,s=O 

and where C(t)= {C~,s(t): r, s =  1 ..... N} is defined by 

(2.36) 

Cr.,(t)=,~r+,.,~,r.,.+~[Tr+l(t)- rr(t)]2+~r_ ~.,~r-,.~rTr ~(f)- L(t)] 2 
(2.37) 

Proof (Sketch). A straightforward calculation, starting from 
Proposition 2.2, shows that 

d 
dZ Vr's(l) ~-- (SV( l ) )r ' s  + Cr"([) (2.38) 

whence (2.34) follows. | 

Remark 2. 7. Equation (2.34) shows that the energy-energy 
correlations that are initially present are damped away by exp[5~t] as 
t--+ 0% but new correlations are built up by the presence of the source term 
C(t); for fixed N, these correlations are of the order of (T+ - T )2. A com- 
parison of (2.37) with Ref. 13 shows that C(t) is related to the entropy 
production. In particular, the local equilibrium state 

Ploc = Z-x  exp (2.39) 
- - j  1 

with flj such that hoJ(e ~jh~- 1 ) - ' =  T~j .t (or f i l l =  1-~t in the classical case) 
satisfies (Plot; Hi )  = T y =  (Poo; Hi )  for all j, but does not coincide with 
Po~, since Vr,s vanishes identically in Ploc- Nevertheless, the correlations in 
the stationary state are small on the macroscopic scale in the limit as 
N ~ o% as we shall see in Section 4. 

Remark 2.8, The fact that the (discretized) heat equation holds 
exactly, with temperature independent conductivity 1~, is related to the 
highly idealized nature of the model, whose stochastic properties, embodied 
in the intermediate reservoirs, are independent of the temperature. 
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3. THE STATIONARY STATE FOR N = 2  

For the classical version of the model, with N = 2, we determine the 
stationary state by finding the stationary solution of Equation (2.14). We 
introduce new variables and new temperature parameters 

= /'/1 ~- 112, " = 111 -- 122 (3.1a) 

fl = 1(/? _ +/? + ), 6 = �89 - fl + ) (3.1b) 

and choose (o = 1 and 

h_(1)=hla(O)=h+(1)= 1 (3.2) 

The stationary Fokker-Planck equation becomes 

E 6~2 ~2 ~2 6q2 6~ 
{ ~--~- ({ + - ,21 ~-~5r/2 + 2,  ~---~-~--~ + (2 +/?{ + 6 , )  a7 

+ (6{ + ( /3-  2 ) , ) ~  + 2/?] p = 0  (3.3) 

When 6 = 0 (equal temperatures), the stationary state is the,canonical dis- 
tribution Z- le  -/~r This suggests the Ansatz 

p(~, ,) = e-~r ,) (3.4) 

Inserting (3.4) into (3.3) gives 

6~2g c~2g (~2g 
~ - ~ +  ({ + { 2 - " 2 )  ~--~~r/2 + 2" 04 0,  

~3g 
+ ( 2 + 6 , - / ? { ) ~ +  [ 6 ~ - ( / ? + 2 ) , ] ~ - / 7 6 , g = 0  (3.5) 

Note that, when 6 = 0, a constant solves (3.5). 
The differential operator in (3.5) may be written as a sum T(r + T(,}, 

where 
T(,)= _ , 2  02 3 

0--- 5 - (/? + 2) ,  ~ - ~?dr/ (3.6) 

involves only the variable ,. The kernel of T(,) contains the function 

qk(r/) = F(/? + 2)( /76,)-  (m)(e + 1)Se + 1(2(/76,),/2) 
(-/?a,)- 

= r ( / ?  + 2) .L  o= n ! / ~  7 if-+ 2) (3.7) 
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where J~ +1 is a Bessel function of the first kind. The normalization con- 
stant in (3.7) has been chosen in such a way that ~b(~/)= 1 when 6 = 0. This 
suggests to us that we look for a solution of (3.5) in the form 

g(r ~) = ~(~) + 0(~, ~) (3.8) 

Then 0(r ~/) must satisfy 

[T~,,) + T j  0(~, ~) = -T~, , )~(~)  

62fl~ ~ ( r + 3 - f i ~ ) ( - f l & l ) ~  
-- ( fl + 2 ) ( fl + 3 ) r = O r~ -fi--+ - ~  (3.9) 

where (x)y - F(x + y)/F(x) is the Pochhammer symbol. 
The right-hand side of (3.9) is independent of r /up to order 62, so that 

we can write 

0(~, ~) = 00(3) + 01(~, ~) (3.10) 

where 

0o(~) = O(62), 01(~, ~/) = o(~2) (3.1.1) 

The equation for 0o(~) is obtained from (3.9) by suppressing all the terms 
with r ~> 1 in the right-hand side, and we observe that it admits the simple 
particular solution 

0o(~) = 62fi 42 (3.12) 
2(f l+ 2)(fi + 3) 

This observation is crucial for the construction of the stationary state, in 
that it allows us to set up a hierarchy of ordinary differential equations 
admitting polynomial solutions. Indeed, Eqs. (3.9), (3.12) suggest the 
Ansatz 

O(~,t l )=(f i+ 2)(fi_t_ 3)r=or[(fi_t_4)r~..,=otlkBk, r(4) (3.13) 

where B0,0(r r and where 

n(k,r) 

Bk,r(~)= ~ C~,r~', k 4 r = O ,  1, 2 .... (3.14) 

Now we have the following: 

/ e m m a  3.1. Equation (3.9) admits a solution in the form (3.13), 
provided the Bk,r(~) satisfy the following hierarchy of ordinary linear dif- 
ferential equations: 
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~Bj~,r + [2 (k+  1)-f l~]B'k, , -k( f l+k+ 1)Bk,r 

=r(r +fi+ 3)[fi-'B'k_,,,_~--Bk_~,r_,] +~(r + 3--fl~)6k,r 

+fl ~r(r+fl+ 3)(k+ 1)~ak+~,~_ 1 -  ( k + 2 ) ( k +  1) ~(1 +~)Bk+2,~ 

(3.15) 
I_emma 3.2. The hierarchy (3.15) admits a polynomial solutions in 

the form (3.14), where 

n(k, r) = r - k + 2 (3.16a) 

C~,, = 0 for r - k odd (3.16b) 

The remaining C t k,r are determined by a set of recursion relations, starting 
from 

2 __ 1 C O - 0 (3.17) C~ : ClO,0 - -  0 ,  C o , o  - 2 ,  0,2j  - 

Lemma 3.1 is proved by a straightforward verification. The proof o f  
Lemma 3.2 was obtained in Ref. 18; it is too long for inclusion here. 

Now we are ready to state then main result of the present Section. 

T h e o r e m  3.3. For sufficiently small 6, the stationary state poo((, t/) 
is given by 

v 
Poo({, rl) = Z-le-er LV(fl + 2)(fl&l) (1/2)(fl + 1) j f l+ 1(2(flp//)1/2) 

/~,2 ~0 (-B'~)r ~o,*Bk,r(~)] (3.18) 
+ ( f i + Z ) ( f l + 3 ) r  r l ( f l+4)rk  

/~ (-/~1o 
= Z -  ae -l~r 1-~--~3r/+ ~., 

,=2n! ( f l+  2), 

x ~n~ ~ k=~ ~ k,.-2(~) (3.19) 

where Z 1 is a positive normalization constant, and where Bk,r(~) is the 
solution of the hierarchy (3.15). The series expansion (3.19) converges 
uniformly in ~, tl. 

P r o o f  (Sketch). It can be shown (18) that the series 

,=0 r!(-~4-),o~< sup e ~eqkBk,,. r 
I~ t l~<r  + oo k = O  

(3.20) 
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and 

f] • 
r~=or!(fl+4)r ~0 =-~  k=O 

are convergent for sufficiently small 6. From this result and from known 
properties of the Bessel functions, it follows that the series expansion (3,19) 
is uniformly convergent and defines an absolutely integrable function 
p0({, q), which is a solution of the stationary Fokker-Planck equation (3.3) 
by construction. Now we prove that p0 gives the stationary state Po~, when 
correctly normalized. We can write 

p~ ,1) = c~+ p +(~, ,7 ) -  c~- p (~, ,7) 

where ~+, ~_ are nonnegative real numbers, and where p+, p are states 
in g. Then, for all observables A, we have 

(p0; A ) = (exp[Kt](p~ A ) 

= c~ + (exp[Kt](p +); A ) - ~_ (exp[Kt](p-); A > 

t--,o~' (o:+-~ ) (p~;A)  (3.22) 

by Proposition 2.4. Then p~  is a normal state, given by a distribution 
function Po~(~, t/), which is proportional to p0(~, t/). The normalization 
constant Z - 1  is positive by continuity for sufficiently small 6, since pO(~, q) 
is proportional to e - ~  for 6 =0.  | 

Romark 3.4. The stationary expectation values of #1 and Ft2 can be 
computed exactly from Eq. 3.3, as in Proposition 2.5: they are 

f l+2-6  f l + 2 + 6  
(#1)st  =fl(f l  + 2 ) _  •2, (#2)st  -- fl(fl _+_ 2 ) _  62 (3.23) 

It is interesting to compare the stationary state Poo with the local 
equilibrium state p~oo with inverse temperatures f l1=(#1)~71 and 
/72 = (#2)~71, and with the product state p| defined by 

p| =(f~ p~ dq2 dp2)(;R2p ~ dq~ dpl) (3.24) 

Up to second order in 3, we have 

p~ = ~-~2 e-/~r {1 - (~firl'+ 62 (1 "" 
f l + 2  (fi+2)(fl+3)[~ (f12r12+fl{2)- +~)]+ "} 

(3.25a) 
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/3+2 (/3+2) 2 

(3.25b) 

/32 { c]/3r/ + c52 1/33+3~2+/3r/2 fl~2 
p| =-~-~7~2 e -~r 1 . . . .  

/3+2 (/3 + 2)2(/3 + 3) 

(/3+8)(/3-1)]+...}/3 (3.2sc) 
whence we see that deviations from local equilibrium and correlations 
between the sites appear starting from order 62 . 

4. M A C R O S C R O P I C  B E H A V I O R  IN THE 
H Y D R O D Y N A M I C  L IMIT  

In this section, we assume that the oscillators S j : j  = 1,..., N, are placed 
on the interval (0, L), at coordinates x j=  ~j, with e = L ( N +  1,) -~, and we 
let e ~ 0, keeping the macroscopic length L fixed and viewing the system as 
a continuum. For the sake of simplicity, we take a homogeneous chain, 
with 7j j+  1 = 7 for all j. 

Let T(x)  be a strictly positive smooth function, with T(0)= T_ and 
T(L) = T+. It is not hard to prove that the solution of the discretized heat 
equation (2.28), with initial condition Tj(0)= T(~j) and with the boundary 
conditions (2.29), is an approximation to the solution of the heat equation 

0 2 

0 T(x, t ) =  T(x, t): x E ( O , L ) ,  t ~  + (4.1) 

with initial condition T(x, O) = T(x)  and with the boundary conditions 

T(O, t) = T _ ,  T(L, t) = T+, for all t (4.2) 

in the sense that 

lira sup ITj(t/~2) - T(ej, t)J =0,  e = L ( N +  1) -~ (4.3) 
e -~ 0 j  = 1,...,N 

uniformly on compact intervals in t. The result can be obtained by an 
application of the theory of approximation of contraction semigroups, as 
found, for instance, in Chapter 9 of Kato's book O9). 
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Now we prove that the macroscopic behavior of the model in the 
hydrodynamic limit is completely determined by the heat equation. In 
other words, starting from a local equilibrium state 

p ~ = Z - ~ e x p l -  ~ fl(ej)Hj] (4.4) 
j = l  

and letting the system evolve for a time of the order of e-2, the expectation 
values of macroscopic observables in the state exp[Kt/e2](p ~) are close (for 
small E) to the expectation values in the local equilibrium state 

p~( t )=Z  -1 exp - ~ fl(ej, t) 
j = l  

where T(x, t) = hco(e ~(x;~176 - 1)- 1 (or T(x, t) = ~(x, t ) -  1 in the classical 
case) satisfies the heat equation (4.1), with the boundary conditions (4.2). 
However, small deviations from local equilibrium should appear when con- 
sidering the time evolution of fluctuation observables. (7~ 

Macroscopic obsevables are defined as (Wick-ordered) polynomials in 
the smeared energies H~( g) : g ~ C ~ [0,L] given by 

N 

H~(g)=e ~ g ( e j ) H j : e - - - L ( N + I ) - I ,  g E C ~ [ O , L ]  (4.5) 
j = l  

This corresponds to the idea that a "macroscopic point" is indeed a 
macroscopically small region, containing a very large number of atoms. As 
initial state, we take a local equilibrium state of the form (4.4), where 
T ( x ) = h c o ( e ~ ( X ~ - l ) - i  (or T(x)=f l (x )  -1 in the classical case) is a 
smooth function, with T(O)= T ,  T(L) = T+. We define 

K~=e -2 K +  ~ Kj, j + I + K  + , e = L ( B + I )  -1 (4.6) 
j = l  

and we have the following: 

T h e o r e m  4.1. The smeared energy correlations 

(exp[K~t](p~); :H~(gl )" 'H~(g, ) : ) :  gl,..., g,~C~ L]  (4.7) 

factorize, in the limit as e--. 0, to 

r = l  
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Proof. It is convenient to view the expressions (4.7) as defining the 
joint distributions of random variables X~(g): g ~ C ~ [0, L]  with respect to 
probability measures P~, defined on a measurable space 62, ~ )  which we 
need not specify, as 

f X~(gl)'"X~(g,) dP~= (exp[K"t](p"); :H~(gt)'"H~(g~):) (4.9) 

We have, from (2.27) and (4.3), 

N 

(exp[K~t](p~); H~(g) ) = e ~ g(ej) T/(t/e 2) 
j = l  

~ o  ' g(x) r(x, t) dx (4.10) 

where Tj(t) [resp., T(x, t)] is the solution of the discretized heat equation 
(2.28) [resp., of the heat equation (4.1)] with the appropriate initial and 
boundary conditions. 

Taking into account (4.10), it suffices to prove that thp variance 

f~ X~(g)-e ~ g(ej)rj(t/e2) 2 dP~ (4.11) 
j = l  

N N 

=~2 ~ g(er) g(es)(1 +6~,~) V~,,(t/e2)+e z Z g(ar)ZT~(t/e2) 2 
r , s = l  r = l  

[where Vr,,(t) has been defined in Equation (2.32)] vanishes in the limit as 
e--.0. Define a scalar product (., .)~ on [R N2 [e=L(N+ 1) -1]  by 

N 

(a,b)~=e 2 ~, ar,s(l+6r,s)br,s:a={ar,s},b={br,~} (4.12) 
r,s = i 

and denote by II" ]l~ the corresponding norm. Then (4.11) is majorized by 

ilg(t/~2)ll~ ~2 ~ ig(~r) g(es)12(l+g)r,,) +0(~) 
r , s  ~ 1 

Now we estimate IL V(t/e2)l[~. It can be easily seen that 5g defined by (2.35), 
(2.36) is a negative self-adjoint operator with respect to the scalar product 
(-, ")~, so that exp[Sgt] is a contraction in the norm I1" I1~. With the initial 
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state of the form (4.4), we have Vr, s(0) = 0, SO that, by Proposition 2.6, we 
obtain 

II V(t/~2)ll, ~,/~2 = exp[Y~(t/e 2 - t ')] C(t') dt' 
~0 

<~ (t/e 2) sup r/C(t')ll~ 
0 <~ t' <. t/a 2 

= (1//~2)~) s u p  ~2 E (1 ~- ~)rs){(~r+ l , s [ T r +  1(/*) - -  T r ( t t ) ]  4 
0 <~ t' <~ t/e 2 r,s = 1 

-~- Or_  1 , s [ Z r _  l(t*) - -  7r(1')]4}] (4 .14)  

The summation in the right-hand side of (4.14) contains 2 ( N -  1) = O(e -~) 
terms, and for reasonably smooth initial conditions we have 
IT r_+ 1(0 - L(t)[  = O(elT+ - T_  [) uniformly in t e ~ + [this follows from 
(4.3) and from known properties of the solution to the heat equation]. So 
we conclude that 

] [ V ( t / e 2 ) l l ~ = t y O ( l Z + - T l Z ) O ( e ~ / 2 ) ~ O  as e--*0 (4.15) 

thus proving the theorem. | 

Remark  4.2. The estimate (4.15) allows only to prove that the 
variance (4.11) vanishes at least as fast as s 1/2 in the limit as e ~ 0 .  This is 
probably too crude; it should be possible to prove that (4.11) is of the 
order of e and to find the limiting expression of the covariance of the fluc- 
tuation observables 

N 
~ ( g )  = a 1/~ ~ g ( e j ) [ H j -  Tj(t/s2)] (4.16) 

j ~ l  

explicitly [cf. Refs. 7(c), (d), (e)]. 
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